MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B.

نویسندگان

  • Jing Hu
  • Tao Sun
  • Hui Wang
  • Zhengxin Chen
  • Shuai Wang
  • Lifeng Yuan
  • Tingyu Liu
  • Hai-Ri Li
  • Pingping Wang
  • Yukuan Feng
  • Qinhong Wang
  • Roger E McLendon
  • Allan H Friedman
  • Stephen T Keir
  • Darell D Bigner
  • Jeff Rathmell
  • Xiang-Dong Fu
  • Qi-Jing Li
  • Huibo Wang
  • Xiao-Fan Wang
چکیده

The hypoxic tumor microenvironment serves as a niche for maintaining the glioma-initiating cells (GICs) that are critical for glioblastoma (GBM) occurrence and recurrence. Here, we report that hypoxia-induced miR-215 is vital for reprograming GICs to fit the hypoxic microenvironment via suppressing the expression of an epigenetic regulator KDM1B and modulating activities of multiple pathways. Interestingly, biogenesis of miR-215 and several miRNAs is accelerated post-transcriptionally by hypoxia-inducible factors (HIFs) through HIF-Drosha interaction. Moreover, miR-215 expression correlates inversely with KDM1B while correlating positively with HIF1α and GBM progression in patients. These findings reveal a direct role of HIF in regulating miRNA biogenesis and consequently activating the miR-215-KDM1B-mediated signaling required for GIC adaptation to hypoxia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

The HIF-2α-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization.

Cellular adaptation to diminished tissue oxygen tensions, hypoxia, is largely governed by the hypoxia inducible transcription factors, HIF-1 and HIF-2. Tumor hypoxia and high HIF protein levels are frequently associated with aggressive disease. In recent years, high tumor cell levels of HIF-2 and the oxygen sensitive subunit HIF-2α have been associated with unfavorable disease and shown to be h...

متن کامل

Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells

There is growing evidence that microRNAs play important roles in cellular responses to hypoxia and in pulmonary hypertensive vascular remodeling, but the exact molecular mechanisms involved are not fully elucidated. In this study, we identified miR-322 as one of the microRNAs induced in lungs of chronically hypoxic mice and rats. The expression of miR-322 was also upregulated in primary culture...

متن کامل

Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis.

miR-210 is upregulated in a HIF-1α-dependent way in several types of cancers. In addition, upregulated miR-210 promotes cancer proliferation, via its anti-apoptotic effects. It is blind to the regulation of miR-210 under hypoxia conditions for ovarian cancer cells and to the effect of miR-210 on ovarian cancer growth. In the present study, we determined the expression of miR-210 in epithelial o...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer cell

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2016